Cauchy-type determinants and integrable systems

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Cauchy Determinants

This paper classifies the sequences that satisfy a generalization of the Cauchy determinant formula. They are the generalized Fibonacci numbers, up to a scalar multiple. Following this, it is determined which of these sequences generate Hankel matrices of unit fractions with integer inverses. As a corollary we obtain another proof that the Filbert Matrix has an inverse with integer entries, com...

متن کامل

Random Words, Toeplitz Determinants, and Integrable Systems I

It is proved that the limiting distribution of the length of the longest weakly increasing subsequence in an inhomogeneous random word is related to the distribution function for the eigenvalues of a certain direct sum of Gaussian unitary ensembles subject to an overall constraint that the eigenvalues lie in a hyperplane.

متن کامل

Random words, Toeplitz determinants and integrable systems: II

This paper connects the analysis of the length of the longest weakly increasing subsequence of inhomogeneous random words to a Riemnn-Hilbert problem and an associated system of integrable partial differential equations. In particular, we show that the Poissonization of the distribution function of this length can be identified as the Jimbo-Miwa-Ueno tau function. © 2001 Elsevier Science B.V. A...

متن کامل

Cauchy Problem for a Darboux Integrable Wave Map System and Equations of Lie Type

The Cauchy problem for harmonic maps from Minkowski space with its standard flat metric to a certain non-constant curvature Lorentzian 2-metric is studied. The target manifold is distinguished by the fact that the Euler–Lagrange equation for the energy functional is Darboux integrable. The time evolution of the Cauchy data is reduced to an ordinary differential equation of Lie type associated t...

متن کامل

Constructing integrable systems of semitoric type

Let (M, ω) be a connected, symplectic 4-manifold. A semitoric integrable system on (M, ω) essentially consists of a pair of independent, real-valued, smooth functions J and H on M , for which J generates a Hamiltonian circle action under which H is invariant. In this paper we give a general method to construct, starting from a collection of five ingredients, a symplectic 4-manifold equipped a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2010

ISSN: 0024-3795

DOI: 10.1016/j.laa.2010.03.011